Spectral analysis of q-difference equations with spectral singularities
نویسندگان
چکیده
In this paper we investigate the eigenvalues and the spectral singularities of non-selfadjoint q-difference equations of second order with spectral singularities. c © 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملA Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملLexicographical ordering by spectral moments of trees with a given bipartition
Lexicographic ordering by spectral moments ($S$-order) among all trees is discussed in this paper. For two given positive integers $p$ and $q$ with $pleqslant q$, we denote $mathscr{T}_n^{p, q}={T: T$ is a tree of order $n$ with a $(p, q)$-bipartition}. Furthermore, the last four trees, in the $S$-order, among $mathscr{T}_n^{p, q},(4leqslant pleqslant q)$ are characterized.
متن کاملConvergence analysis of spectral Tau method for fractional Riccati differential equations
In this paper, a spectral Tau method for solving fractional Riccati differential equations is considered. This technique describes converting of a given fractional Riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. We use fractional derivatives in the Caputo form. Convergence analysis of the proposed method is given an...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical and Computer Modelling
دوره 43 شماره
صفحات -
تاریخ انتشار 2006